

Role of Hydrogen in the energy transition

OAPEC Symposium Session 2: Establishing a hydrogen economy

Kuwait, July 12th

Manuel Kuehn, Siemens Energy, Head of New Energy for MEA

Our purpose and mission

energize society

by supporting our customers in

transitioning to a more

sustainable world, based on our

innovative technologies and our ability to turn ideas into reality.

Siemens Energy is a registered trademark licensed by Siemens AG.

Low- or zero-emission power generation

Transport of electricity and storage

Reducing CO₂ footprint and energy consumption in industrial processes

Our setup Innovative products support customers in transitioning to a more sustainable world

"Sector Coupling" is the key lever for decarbonization of all end-user sectors – Power-to-Hydrogen as a vital tool

Source: World Energy Balances 2018

New Energy Business 5 Unrestricted © Siemens Energy, 2021

July 2021

Major successes in our electrolyzer development

Continuous laboratory and test operation

Silyzer 100 & Silyzer 200 in test rig and commercial operation

Silyzer 300 in test rig

Test plant operation

Silyzer 300 – Full Module Array The next paradigm in PEM electrolysis

Silyzer 300 – full module array (24 modules)

17.5 MW

plant power demand

> 75.5 % plant efficiency

24 modules

to build a full module array

335 kg hydrogen per hour

New Energy Business **7** Unrestricted © Siemens Energy, 2021

1.25 MW

Power demand based on Silyzer 200

228 Nm³ of green hydrogen per hour

The first industrial scale solar-powered green hydrogen plant in the Middle East

Project

- Partners: DEWA and Expo2020
- Country: UAE
- Location: Dubai (MBR Solar Park)
- Installation: 2020
- Product: Silyzer 200

Challenge

- Installation of world's first PEM electrolysis
 plant UAE ambient conditions
- Integrated H₂ plant for multiple purposes, incl. re-electrification with the largest pure hydrogen gas motor today (280 kW)
- First-of-its-kind character of the project in combination with a very tight implementation schedule and high exposure towards EXPO 2020 Dubai

Use cases

Re-electrification with a 280 kW hydrogen gas engine

Solutions

- One Silyzer 200 and state-of-the-art process control technology based on SIMATIC PCS 7
- Production of green hydrogen via photo voltaic during daytime, storage of hydrogen (93m³@35 bar) and re-electrification during nighttime
- Integrated remote monitoring, operation and maintenance concept, leveraging strong setup of Siemens Energy in Dubai

2021 integrated electrolyzer system at DEWA MBR-Solar park

Masdar, Siemens, Marubeni to develop green hydrogen in Abu Dhabi

By Edith Hancock Jan 19, 2021 1:41 PM GMT 🧠 0

< Share 🖪 🛅 💟 🖸

The memorandum of understanding was signed on 17 January ahead of Abu Dhabi Sustainability Week, which is being held remotely this year due to COVID-19 restrictions image. Mestai

Green Energy partnership

Partnership in Abu Dhabi to develop value chain for Sustainable Aviation Fuel

Project

- Country: UAE
- Location: Masdar City
- Installation: 2023-24 (planned)
- Technology: PV, Silyzer 300, CO2, Kerosene synthesis

Use cases

Synthetic Kerosene for sustainable aviation

Green H2 infrastructure for decarbonized transportation around Masdar City and Abu Dhabi Airport

Fuel for decarbonized shipping (use of by-products, tbd)

Key objectives of the project

- Integrate SE's electrolysis technology into Abu Dhabi's existing industry landscape
- Tap into advanced renewable energy market with extreme low PV prices
- Build foundation to position UAE as Hub for synthetic fuel by selecting and integrating robust and scalable technology
- Localize critical know-how for power-to-liquid applications with high potential for future scale up
- Ensure compliance with upcoming regulation in future export markets by early **involvement of local and international end-customer**
- Establish end-to-end optimized and certified e-fuel value chain
- Ensure alignment with UAE-German Energy partnership agenda

Green Hydrogen - why it is happening now (and not before) ?

- Renewable energy cost development in the last 10 years (2010 2019)
 - Solar Photovoltaic (PV) -82%
 - Concentrated Solar Power (CSP) -47%
 - Onshore Wind -39%
 - Offshore Wind -29%
- Economic stimulus and COVID recovery programs are set to support enegry transition technologies, thus create an "initial demand" to scale up production
- Expected electrolyser cost development in next 30 years
 - CAPEX per kW installed capacity
 840 USD -> 200 USD (-2.5 % p.a.)

Green Hydrogen - why it is not happening faster ?

- Economic aspects of H2 production
- Need to set up complex value chains and new partnerships
- Need to gain operational experience with electrolyzer systems vs. ...
- Willingness to take risks
- Regulatroy environment not yet established

Scaling up power-to-liquid production

A few considerations

Power supply	Electrolysis	C	ompression and storage			Synthesis		Logistics and offtake
(Green) electricity tariff	(Green) water requirements and		Continuous supply requirements	(Synthesis technology development CO2 supply from an acceptable source (avoidable vs. non- avoidable) 	Ç	Local distribution vs. export
Intermittency of electricity supply	availability Operating hours /		 Buffer storage requirements Compression cost, redundancy and scale effects 	Ę				Transportation Certification of
Co-location vs. grid connection vs. blending	load factor Utilities integration esp. cooling							green products Price policy and long-term offtake
Certification								

EPC

Operations, maintenance, replacement, recycling, digitalization, optimization

Guarantees and bankability

New Energy Business 14 Unrestricted © Siemens Energy, 2021

Tank you

Silyzer 300 Fact Sheet

Main technical data

Electrolysis type/principle	PEM	Rated H ₂ production	335 kg/h
Rated Silyzer 300 power	17.5 MW	System efficiency	>76%
Dimension full array	15.0 x 7.5 x 3.7 m	Plant efficiency Silyzer 300	>75.5%
Start-up time until full load	<1min, enabled for grid support	Module design lifetime	Optimized for 80 kOH ⁵
Output pressure	100 mbar	Module weight	2.1 t (water included)
Purity H ₂	Up to 99.9999%	CE conformity	Yes
H_2 quality 5.0 ³	DeOxo/Dryer option	Rated tap ⁴ water requirement	4,700 l/h

All values calculated for ISO conditions: $T_{amb} = 15^{\circ}C$, 60% rel. humidity, 1,013 bar, air cooled, new and clean, HHV¹ of hydrogen= 39.45 kWh/kg **1** Higher Heating Value | **2** Operating Hours | **3** 99.999% purity | **4** about 600 – 1,000 µS/cm | **5** after >80kOH operation still possible